VSP

ValuStats Statistical Package

&

Business Solutions

Operations Manual

Contents

Introduction2
Design Philosophy2
Applications covered by VSP version 2.0
Research Solutions:4
Business Solutions:4
Installing and Running the VSP Software:5
PREPARING YOUR DATASET FILES6
Research Solutions Datasets6
Business Solutions Datasets7
RUNNING THE PROGRAMS8
THE OUTSTANDING FEATURES OF VSP 2.08
PANEL and CROSS-SECTIONAL DATA11
Example of Data Definition for Repeated Measures ANOVA:13
Structural Equations Modeling (SEM) example14
Naming, Saving, and Loading Dataset Files14
Chi-Square and One-way ANOVA data definition forms15
Linear Programming17
Matrix Manipulations19
RESULTS AND GRAPHS
DISPLAYING STATISTICAL TABLES

Introduction

VSP is the short form for ValuStats Statistical Package. It is a suite of programmes designed to offer cutting edge solutions to advanced statistical analysis for researchers, students, teachers, research coordinators as well as offer business planning and analytical solutions.

It is built with Python312 programming language with its advanced and powerful tools for scientific and business solutions.

Design Philosophy

VSP design philosophy is premised on four values:

The 4 values are portability, simplicity, robustness, and inclusiveness.

Portability ensures that the software can be deployed and used on any of the three major operating systems viz <u>Windows</u>, <u>macOS</u>, and <u>Linux</u>, as all issues of compatibility and command structuring have been resolved at the design and coding stage.

Simplicity assures the VSP user friendliness because:

- It is implemented with menu driven options without the need for users to learn intricate commands to define functions and processing parameters and or input data structure.
- ii) It is a GUI interface enhanced with input forms on simple dialog boxes.
- iii) The dataset method adopted is the MS Excel spreadsheet because of its general ease of use and understanding and owing to its ubiquitous nature.
- iv) The package adopts simple text files for the storage of outputs because text files can be ported easily across all OS platforms; and
- v) Where necessary, graphical illustrations accompany the numerical outputs.

Robustness ensures that data are handled, processed, and analyzed with the highest level of accuracy reminiscent of the powerful Python processing ability integrating the most advanced data analytics methods and error indicators such as the eigenvalues, AIC, BIC, and Log Likelihood estimations.

Inclusiveness ensures that all aspects of the results needed for a particular analysis are included for the users to choose the most relevant to their analytical needs. In addition, this package provides the crucial link between data analysis and real-life business applications.

Applications covered by VSP version 2.0.

The applications covered by VSP version 2.0 (second release) are classed into two: *Research Solutions* and *Business Solutions*.

Research Solutions:

Research solutions typically cover the following modules >> OLS regression, Panel data regression, Cross-Sectional Analysis, Dynamic OLS regression, Autoregressive Distributed Lag (ARDL) modeling, Auto-Regressive Integrated Moving Averages (ARIMA), Generalized Method of Moments (GMM), Structural Equations Modeling (SEM), ANOVA, MANOVA, Repeated Measures ANOVA (RMA), LOGIT regression, Ordinal regression, Factor Analysis, Cronbach-alpha Pilot Test, Thematic Research Analysis, Hierarchical regression, Chi-square Analysis, Linear Programming, and Matrix manipulations.

Business Solutions:

Available business solutions in this release include >> Breakeven Analysis, Budget Planner, Discounted Cash Flow (DCF) Analysis, Estimated Credit Loss (ECL) Analysis, Projects' Risk Analysis, Times Series Forecasts, Reciprocal Cost Allocations, Discriminant and Ratio Analyses.

Installing and Running the VSP Software:

The **VSP** program suite is designed to run in and store data and results of processing in the **C:\ValuStats**\; or **/ValuStats/** folder. You must install the software from the original distribution list folder using the **vspw_installer.exe** for windows or **vspm_installer.exe** for macOS, and **vspl_installer.exe** for Linux operating system after purchase and download. The following steps should guide you:

- 1. Create a **Dist** folder on your system's root or main working directory.
- 2. Copy or download all the files to the '**Dist**' folder.
- 3. Open or go to the '**Dist**' folder.

- 4. FOR Windows USERS: Press the Windows logo button and letter R together (Win + R). Type cmd then press Ctrl + Shift + Enter -. Type 'cd C:\Dist' and press Enter.
- FOR macOS: Press 'Command' plus Tab to display the macOS Terminal (the equivalent of windows command prompt environment). Type 'cd /Dist' and press Enter
- 6. At the command prompt or Terminal in the 'Dist' folder:
 - a. For Windows: C:\Dist>; Or C:\user\your name\Dist> (like
 C:\user\Patrick Enyi\Dist>), type vspw_installer.exe and press
 Enter.
 - b. For macOS/Linux: /Dist>; Or /user/your name/Dist> (like /user/Patrick Enyi/Dist>), type vspm_installer.exe and press Enter (for macOS). Or vspl_installer.exe (for Linux OS).
- 7. Attend to any issues raised (if any).
- B. Go to the C:\ValuStats folder in Windows environment and click vsp.exe to run the program. For macOS, open the Search folder and type ValuStats. This will show you the newly created ValuStats folder; click on it to reveal its contents. Then select the vsp.exe. You can transfer the file to applications window for easy accessibility.

If you need place a shortcut icon of the vsp.exe on your **start menu**, **taskbar** or desktop, right-click the vsp.exe icon and select *pin to taskbar*, *pin to start menu* or *send to desktop*.

IMPORTANT

Remember to load your Excel dataset files first to the C:\ValuStats folder before attempting to conduct any analysis.

PREPARING YOUR DATASET FILES

Due to the ease, ubiquity, and popularity of the MS Excel spreadsheet, **VSP** adopted it as its base dataset tool.

Research Solutions Datasets > All research solutions dataset files are by default designed to use the **.xlsx** Excel extension files. To define data heads, columns are named and used to identify the variables of the set. For instance, a typical dataset can have the following column names:

Column ID	A	В	С	D	E	F	G	Н	1
Column	Obs	FirmID	TaxGrp	Pretax1	Pretax2	Pretax3	Pretax4	Comp	TaxPaid
Names									

The names of the columns and the data groups they represent MUST be remembered when you want to run the test. The names must be given to the **vsp** software the way they are written in the Excel sheet columns otherwise the system will not recognize them; for instance, 'TaxPaid' is not the same as 'taxpaid' or 'Taxpaid'.

Business Solutions Datasets > Some analysis like the Break Even, Time Series and Moving Averages, DCF and Risk analysis etc., datasets utilize the 1997/2003 Excel file format with the **.xls** extension instead of the .xlsx extensions used by the later versions of MS Excel. *This implies that you MUST save your file as a 97/2003 Excel file when you generate your data for this category of analysis*. This is because using the wrong Excel file format will generate errors.

Another import thing to note here is that whereas you can place the variable name in any order with the columns in the **.xlsx** extension files, you MUST, however, arrange the variables' names of the business solutions in the order with which they shall be read and processed by the software codes. Sample dataset for DCF analysis:

	A	В	С	D	E	F	G	Н
1	Year	D.Factor	2014	2015	2016	2017	2018	
2	2019	12	1200000	1500000	2000000	1100000	1120000	
3	2020		830000	740000	755000	730000	830000	
4	2021		440000	242000	460000	440000	830000	
5	2022		440000	355000	465000	450000	830000	
6	2023		440000	462000	465000	460000	830000	
7	2024		440000	465000	465000	365000	830000	
8	2025		440000	468000	368000	268000	755000	
9	2026		440000	370000	270000	440000	755000	
10	2027		440000	171000	172000	440000	755000	
11	2028		440000	172000	173000	440000	440000	
12	2029		440000	110000	173000	440000	440000	
13	2030		440000	440000	173000	440000	440000	
14	2031		440000	440000	173000	440000	440000	
15	2032		440000	440000	173000	440000	440000	
• -	2000					•••••	••••••	
	< >	Sheet	-	÷				
Rea	ady 🎇 Aco	cessibility: Una	vailable					

RUNNING THE PROGRAMS

To run the **VSP** software, click or double click the **vsp.exe** icon, this will first display the opening or welcome splash screen for a few seconds, then it will take the user to the control module. The user can then select the menu of their choice and call up the module they want to use.

Once any module of the **VSP** programs is called up, the first thing it will show is a dialog box which will enable the user to proceed or review the dataset for correctness of format for the immediate processing need. Thereafter, it will present the user with the data definition form which will enable them to enter the processing parameters such as the name of the **outcome** or **dependent** variables in the appropriate box, followed by the names of the **predictors** or **independent** variables separated with comma with no space in between. If the analysis requires **grouping** and **time separation** as in the case of panel data, repeated measures ANOVA, and structural equations modeling, the group's column name and the time column must be indicated in the appropriate text boxes of the dialog box.

THE OUTSTANDING FEATURES OF VSP 2.0

The five most outstanding features of VSP 2.0 are that: **1) it enables the multiple processing of many Dependent** or **Outcome** variables.

2) it allows for data conversion from one format to another. For

instance, it enables users the ability and choice to convert data from whole numbers to ratios or percentages, and from whole numbers or percentages to logged values using natural logarithms. This feature enables a level playing field for the analysis as well as the unification of the results for a better and more meaningful interpretation.

3) it automatically cleans the dataset for invalid entries like outliers, null and infinite numbers and replaces them with column means before processing.

4) it enables users to introduce Control variables – which are variables designed to test the effect of predictors on the outcome variables. The VSP allows users to introduce as many control variables as can be possibly desired.

5) it enables users to introduce Moderating variables – are variables designed to test the strength and direction of the predictor variables on the *outcome variables* after adjusting for a joint or combined effects on the predictor variables.

netric fo	rmat? (Y	es/No)
Cancel	i l	
	Cancel	Cancel

When you open the **Research Data Analysis** menu, this dialog box will pop up after some initialization. The question here is **Are your dataset in the same metric format? (Yes/No)**. This question enables you to ascertain if the data in the dataset to be analysed are in the same metric format. Often, researchers collect data with different metric formats. It creates problem of clarity and inaccuracy when data of different metric formats are regressed against each other, for instance, exceptionally large number cannot be regressed against ratios or percentages without the problem of spurious interpretation. Therefore, it will be better to convert the entire data to be regressed into the same data metric format. If your data are already in the same metric format, type Y and click Ok else type **N** to convert it.

After you have elected to convert data at the first dialog box, this second box will appear for you to confirm your choice. This time around type **Yes**, to proceed with the data conversion.

Filename Load file			
	Filename		Load file

After you have chosen to convert your data, this dialog will appear. Simply enter the dataset filename without the .xlsx extension and click *Load file*. For instance, if your dataset filename is **cross-sec.xlsx**, just type **crosssec** and click *Load file*.

This will load the file if it exists, and the file attributes will be displayed under 6 column heads as shown below:

Variable: The names of the variables are displayed under this heading. **Type:** The type of variable will be displayed under this heading. The type can be **Numeric** or String or object.

Metric: Metric defines the type of metric used if defined during initiation. Metric can **log, percent, ratio** or **normal number.**

Highest: This column shows the highest value of that variable group to guide the user when performing the data conversion process.

Lowest: This column shows the lowest value of that variable group.

Convert To: Is used to tell VSP what to convert the value to – the two options to convert to are – **log** and **ratio**. Note that ratio is the same as percentage.

		Filenan	ne cross-sec		
Variable	Туре	Metric	Highest	Lowest	Convert_To
Obs	Object		100	1	
profit	Numeric		7321.5	211.0	[
Entity	Object		serve3	bank	
Year	Object		2015	2011	
pretax1	Object		21	10	1
pretax2	Object		21	10	
pretax3	Object		21	10	
pretax4	Object		21	10	
ncentive1	Numeric		96.0	18.0	
ncentive2	Numeric		96.0	18.0	
ncentive3	Object		45	18	

PANEL and CROSS-SECTIONAL DATA

.

For panel data and cross-sectional data analysis, the first dialog box that will show up is:

🖉 Data File Format		T		×
Ensure that your dataset Type Y to proceed or N to	contains the 'Er abort (Y/N)	ntity' and	'Year' co	lumns:

Because the panel and cross-sectional data analysis makes use of **Entity** and **Time**, it is essential that the dataset contains this two sensitive information (as part of the variables). This dialog box is to remind the user of the need to include them. If you are sure that your dataset contains them, type **Y** and click OK to proceed, else, go back and correct them. It is more appropriate to give the name **Entity** and **Year** to the Entity and Time variables' columns (instead of Firm and Period or Time) to align with the suggestions presented by the data definition form. For the cross-sectional analysis, the data definition form/dialog will look like the one below:

Cross Sectional Data Definition Form					\times
Dependent Variable Name:	pre	ofit,incentive,market_gain	1		
Independent Variable Names:	pretax1	pretax2,pretax3,pretax4			
Control Variable Name(s):	ind	centive1			
Moderating Variable Name(s):	ind	centiv2			
Combined Dependent Variable Name:		PERFORMANCE			
Year/Time of analysis desired:		2023			
Column head for Year/Time (as it in dataset):		Year			
Names of entities desired for analysis:	ank1,bank	2,bank3,firm1,firm2,firm3,	coy1,co	oy2,coy	
Column head for entities (as it is in dataset):		Entity			
Name of Dataset File:		Cross-Sec			
ENTER VARIABLE NAMES SEPARATED					
Ensure that variable names entered are					
the same as the names of columns in					
your dataset file.					
	Pr	ocess Cross Sectional An	alysis		
		Cancel			

In the above form, 3 dependent variables have been entered. This implies that the main objective function's **outcome variable** is proxied by three sub-dependent variables named – profit, incentive, and market_gain. These 3 variables are then represented as **PERFORMANCE** in the 'Combined Dependent Variable Name' which forms the outcome variable for the major objective function.

From the form, it was also observable that there 4 predictors or *independent variables* named – pretax1, pretax2, pretax3, pretax4. This was followed by the **control variable** named *incentive1* and the **moderating variable** named *incentiv2*. With VSP 2.0, it is possible to use both *control* and *moderating variables* as part of the data analysis control parameters, thereby enhancing the robustness of the analysis. Names of entities desired assume that not all the firms or entities in the dataset will be used for the analysis. If, however, the user intends to use all the entities or firms in the dataset, then the entry will be '**ALL**' instead of the individual entity names as listed.

Example of Data Definition for Repeated Measures ANOVA:

🚯 Input Data Definition Form	- 0	×
Dependent Variable Name:	compliance	
Within Group Variables:	etax2,pretax3,pretax4	
GroupID or Subject Name:	taxgroup	
Name of Dataset File:	RMA_data	
ENTER VARIABLE NAMES SEPARATED		
WITH ONLY COMMA AND NO SPACES	Use Excel File	
Ensure that variable names entered are		
the same as the names of columns in		
your dataset file.		
	Cancel	

For Repeated Measures ANOVA (RMA), 3 ingredients must be present in the dataset – the *Dependent Variable Name*, the *Within Groups Variable names* (just like the predictors), and the *GroupID or Subjects' name*. While the within group variables are the repeated tests or measures which the analysis want to compare their effects on the dependent variable, the last variable is what is used to organize the performance according to the subject matters or individuals involved in the test. For instance, the within group variables can be the different combinations of certain drugs (e.g. comb1, comb2, comb3, comb4, etc.), while the dependent variable can be the rate of response to treatment by the named individuals which are identified under the GroupID column of the dataset.

NOTE ESPECIALLY:

The software might take some time before displaying the **input data form**, this is because it must go through some initialization process. Some of the modules combine **console entry** with data forms usage.

For **Structural Equation Modeling (SEM)**, there are three groups of variables to be defined – the **outcome** or **response** variable, the **latent variables**, and the **predictor variables**. These variables must be

predetermined and identified with the needs of the user or analyzer. Once this is done, the data groups can then be entered into the boxes where they belong separated from each other with commas (no space in between).

Structural Equations Modeling (SEM) example

The structural equations modeling is used to test the effects of mediating variables on both the dependent variable and the predictor variables. It is a test which links the dependent variable with the independent variables and shows graphically how the link connects to each other. SEM shows which predictors have direct effects on outcome variables and which predictors are indirectly linked.

In the above form, **period** is the dependent variable, while **ing1**, **ing2**, **ing3**, **and sal** are the *mediating variables* which are also known as **latent variables**. The predictor or observed variables are listed as **meal**, **egg**, **ses**, **oil**, **group**, while the dataset filename is **sumptas**.**xlsx** (but simply listed as **sumptas**) in line with the VSP datafile name protocol.

Naming, Saving, and Loading Dataset Files

The data input method adopted for VSP is a combination of keyboard/console input (where standard dialog form is not implemented), use of standard data definition forms, and direct input from saved dataset files.

When preparing your dataset file, you are allowed to give it any name that you can remember provided that the file is saved in the **C:\ValuStats** (or

/ValuStats for macOS and Linux) folder thereafter. However, there are 2 analysis modules that you MUST save their dataset files as it is given below (otherwise the system will not process them):

S/N	Module	Dataset File Name (to be used)
1	Reciprocal Allocation	C:\ValuStats\ RecAlloc.xlsx
2	DCF Analysis (Non VBU)	C:\ValuStats\ Dcf-Data.xlsx

**Use /ValuStats/filename e.g. /ValuStats/Dcf-Data.xlsx for Mac and Linux

Chi-Square and One-way ANOVA data definition forms

To call up the data definition form dialog boxes for Chi-Square and One-way ANOVA, run the VSP module, open the **Statistics** menu, make your selection; The two modules use the **command prompt console** to request for the data file name. The command prompt will appear on your console (screen) like this:

At the appearance of this, type in the name of the data file you saved earlier in the ValuStats folder and press enter. This will bring up the form. You can then make your selections and fill it as in the example following:

🖾 vsp		× +	~	
Enter dataset	file na	me:>chi	-data	
🚯 Chi-Square: Sele	ct Sections and	d E —		×
	🔽 Attit	ude		
	🔽 Ski	lls		
	🔽 Beha	vior		
	🔽 Capa	ncity		
	🔽 Mine	lset		
	Number of s	ections:		
1	0			
	Number of c	olumns:		
5	i			
N	umber of res	pondents:		
6	0			
	Process Se	lection		
	Canc	el		

The Chi-square and One-way ANOVA data entry forms are designed to display the column heads or variable names of the data in the dataset. All the user is expected to do is to select the variables to be used for the analysis. The Oneway ANOVA data input definition form for this category of analysis looks like this:

Select Sections and Enter other o —	×
🔽 Winery	
🔽 Bakery	
🗆 Shoe	
I PVC	
🗖 Tobaco	
CyberCafe	
🗆 CabHire	
I ✓ Tyres	
🗖 Juicer	
▼ Desc	
Process Selection	
Cancel	

The **Desc** column must be included in your dataset and selected as part of the data to be processed. It is the column that describes the dataset groups for the understanding of the computer during processing.

Linear Programming

To use the Linear Programming module, open the Mathematical Tools menu, select Linear Programming and use the form displayed to enter your defined model. The LP module uses the simplex algorithmic solution technique to optimize. For instance, assuming the user defined the following model:

```
Minimize Z: 12A + 8B
Subject to:
A + B \ge 100
0.3A + 0.1B \ge 15
0.1A + 0.05B \ge 8
0.2A + 0.4B \ge 25
<A \ge 0; B \ge 0 >
```

The data are then entered in the form as follows:

😰 Lineai	r Progra	mmi	ng Ai	nalysi	is Da	ata Fo	orm												×
Name of		Eny	i				No d	of Co	nstrai	ints	4	N	o of l	Decis	ion \	/ariak	oles 2	:	
Constrn	RHS	/ar1	var2	/ar3	√ar4	√ar5	/ar6	/ar7	√ar8	/ar9	/ar1('ar1'	/ar1:	ar1	far1	ar1	ar16	/ar1;	/ar18
1	100	1	1						\square		\square			\square			\square	\square	
2	15	0.3	0.1											\square	\square	\sim	\square		
3	8	0.1	.05											\sim	\sim	1	\square		
4	25	0.2	0.4											\square	\square	\square	\square		
5			\sim											\sim		1	\square		
6			-											\sim	1		\vdash		
7			\vdash												1		\vdash		
8														1	1		\vdash		
9			-											1	1	1	\vdash		
10														1	1	1	\vdash		
11														1	1	1	H		
12														1	1	1	1	\vdash	
13														1	1	1	⊢		
14		E												-	1	-	\vdash		
15											-		\vdash	-	-	-	\vdash		
16											1			1	1	1	1		
17			\vdash						\vdash					1	1	1	1		
18			H			Н	<u> </u>	1	H	<u> </u>	H	<u> </u>	<u> </u>	1	1-	1-	1	\vdash	
19								<u> </u>					<u> </u>	<u> </u>	1	1	<u> </u>		
20		F												1	1	-	<u> </u>		
Objectiv	e Func.	12	8													<u> </u>			
0	Maxim	ize			• 1	linir	nize				<u>_</u>	ànc	el					<u>o</u> ĸ	

The LP analysis result is given as follows:

THE	INITIA	L SIMP	LEX TA	BLEAU	- J								
ROW	×1	x2	x3	×4	S1	S2	Z						
1 2	1 1	0.3 0.1	0.1 0.05	0.2 0.4	1 0	0 1	12 8						
QTΥ	100	15	8	251	0	0	0						
 THE	FINAL	SOLUTI	ON TAB	LEAU									
ROW	×1	×	:2	хЗ		×41		S1	S2	Z			
1 2	0. 1.	4	.0.1	1. 0.		-4. 0.6	 	20. -1.	-20. 2.	80. 4.			
QTY	ο.	_	.7.	ο.		-3.1		-60.	-40.	-1040.			
THE INTERPRETATION 													
Choo: The	se 40. Least	for x Value	2 of thi	s cor	nbina	ation	wi)	ll resul	t to: [60 :	x 12.] +	(40 x	8.] -	= 1040
r Help,	press F1												

Matrix Manipulations

Matrices to be manipulated must be saved as text files. The matrix array elements must be demarcated with only a space in between. Examples:

MatrixA.txt =	24
	48
MatrixB.txt =	38
	42
MatrixC.txt =	22 24
	44 48
MatrixD.txt =	3410
	2711
MatrixE.txt =	32111
	1318
	41215

To **multiply** two matrices, first define and save them as text files to the C:\ValuStats folder. Then start the **vsp.exe** and open the **Mathematical Tools** menu, select Matrix -> Matrix Multiplication. When the first definition form shows up **click OK**. This will take you to the system prompt cursor. Type the name of the file you used to save the first matrix and press Enter. Do the same for the second matrix; and if all went well with your data, your results would appear immediately.

Note: You can only multiply two matrices of equal rows and equal columns OR if the first matrix has 3 columns (notwithstanding the number of rows) while the second has 3 rows (notwithstanding the number of columns).

To **divide** two matrices, repeat the initial process as with multiplication, then type the name of the *numerator matrix* and press Enter, then type the

name of the *denominator matrix* and press Enter. If no data error is encountered, your result would appear instantly. **Note:** The two matrices must be of equal dimensions.

To find the **inverse** of a matrix: First define and save the matrix. Then start up the vsp.exe (if it is not already running), select Mathematical Tools -> Matrix -> Matrix Inverse. Click Ok when the form is displayed. Type in the name of the matrix file and press Enter. The result will appear instantly.

To perform **Simultaneous Equations** computations: Define the equations and save them as a matrix text file in C:\ValuStats, then start **vsp.exe** (if it is not already running); select Mathematical Tools -> Simultaneous Equation. At the opening of the form, enter the number of rows (row size) and the number of columns (column size), then enter the name of the matrix file, click Ok.

Your simultaneous equation results will be displayed in a matrix format with the last column displaying the solution vector to the variables of the equations in the following order:

Row 1, last column f or variable 1

Row 2, last column f or variable 2

Row 3, last column f or variable 3

Row 4, last column f or variable 4

- •
- •

•

Row n, last column for variable n.

Note:

To perform a simultaneous equation with matrix, the number of columns must be greater than the number of rows by 1. That is, you must have either [2R, 3C] or [3R, 4C] or [4R, 5C], etc.

The matrix method can conveniently manipulate any number of equations (such as 50x51, 100x101, etc.) so long as the computer memory can carry the volume of values to be generated.

General Note

You don't need to enter file name extensions when you type the name of a dataset file. Simply type the name: example *MatrixA* instead of *MatrixA,txt*

or **taxdata** instead of **taxdata.xlsx**. Unlike variable names, dataset file names are not case sensitive, that means you can type the file names with either lower or upper case and it will be accepted.

RESULTS AND GRAPHS

Every module in VSP has been configured to generate all possible results and plots which are displayed on the screen and saved to the various files on disk. The users are at liberty to choose any of the plots and results portions that they deem relevant to their research needs.

Below are some of the results and plots generated from different tests. The dark screen output and the immediate succeeding graph are from the results of **Structural Equations Modeling** analysis, the results on the white background are from the **Dynamic OLS** analysis, while the graphs that followed later were from the **logit regression** analysis and the **repeated measures ANOVA**:

SEM	Inter-V	aria	ble Valu	les:								
	lval	ор	rval	Estimate	Std. Err	z-value	p-value					
Θ	lat1		lat3	1.000000								
1	lat2		lat3	-0.001260	0.016742	-0.075286	0.939987					
2	lat3		lat4	1.000000								
3	prel		lat1	1.000000								
4	pre2		lat1	0.070441	0.311142	0.226395	0.820894					
5	pre3		lat2	1.000000								
6	pre4		lat2	-0.063600	0.184501	-0.344713	0.73031					
7	pre5		lat4	-0.002265	0.242861	-0.009326	0.992559					
8	DepVar		lat1	-0.164802	72.135764	-0.002285	0.998177					
9	DepVar		lat2	-3.836792	68.308183	-0.056169	0.955207					
10	DepVar		lat3	-0.142133	143.676192	-0.000989	0.999211					
11	DepVar		lat4	0.716778	17.55804	0.040823	0.967437					
12	lat1		lat1	10.073504	41.955918	0.240097	0.810255					
13	lat2		lat2	0.013648	0.038838	0.351394	0.725293					
14	lat3		lat3	6.572812	42.77849	0.153648	0.877888					
15	lat4		lat4	5.367296	60.06033	0.089365	0.928792					
16	DepVar		DepVar	0.005684	183.591318	0.000031	0.999975					
17	pre1		pre1	43.750366	99.952543	0.437711	0.661596					
18	pre2		pre2	4.238575	1.068595	3.966494	0.000073					
19	pre3		pre3	0.006928	0.038626	0.17936	0.857655					
20	pre4		pre4	0.001917	0.000456	4.202166	0.000026					
21	pre5		pre5	1.249875	0.279542	4.471156	0.00008					
Str	uctural	Equa	tion Est	imates								
	DoF	DoF	Baselin	e chi2	chi2 p-val	lue chi2 E	aseline	TLI	RMSEA	AIC	BIC	LogLik
Val	ue 3		1	5 1.284232	0.7328	381 5	.923019	0.05488	Θ	35.935788	66.335619	0.032106

Details of SEM Estimates		
	1	11 200222
Chi-square	[ch12:	1.284232
Degree of Freedom	D+ :	3.000000
DoF Baseline	Df_Baseline:-	15.000000
Chi2 p-value	P-Value:	0.732881
Chi2 DoF Ratio	CDR:	5.923019
Root Mean Square Error of Approximation	RMSEA:	0.810976
Standardized Root Mean Square Residual-	SRMR:	0.783179
Comparative Fit Index	CFI:	-0.084103
Tucker-Lewis Index	TLI:	0.783179
Incremental Fit Index	IFI:	0.054880
Goodness-of-Fit Index	GFI:	0.000000
Akaike Information Criterion	AIC:	35.935788
Bayesian Information Criterion	BIC:	66.335619
Log Likelihood	LogLik:	0.032106
Vour Structural Equation Modeling DESULT	S are saved in	<c \="" •=""></c>] + 2 + 2

DOLS Model Summary:

OLS Regression Results

=========			=======
Dep. Variab	le: meal	R-squared:	0.047
Model:	OLS	Adj. R-squared:	-0.033
Method:	Least Squares	F-statistic:	0.5857
Date:	Tue, 23 Apr 2024	Prob (F-statistic):	0.628

05:11:4	.9	Log-Likel	-139.56	
ons: 4	0	AIC:	287.1	
30	6	BIC:	293.9	
(3			
pe: nonro	obust			
std err	t	P> t	[0.025	0.975]
)90 18.702	6.460	0.000	82.880	158.739
608 100.932	-1.054	0.299	-311.060	98.339
718 29.888	-1.100	0.279	-93.488	27.744
0.123	-0.292	0.772	-0.286	0.214
		=======		=======
3.125		Durbin-W	1.868	
s): 0.210		Jarque-B	2.146	
-0.548		Prob(JB):	0.342	
3.293		Cond. No	4.20e+03	
	05:11:4 ons: 4 ope: nonro std err 090 18.702 508 100.932 718 29.888 59 0.123 59 0.123 3.125 59 0.210 -0.548 3.293	05:11:49 ons: 40 36 3 pe: nonrobust std err t 090 18.702 6.460 508 100.932 -1.054 718 29.888 -1.100 59 0.123 -0.292 3.125 59: 0.210 -0.548 3.293	05:11:49 Log-Likel ons: 40 AIC: 36 BIC: 3 pe: nonrobust std err t P> t 090 18.702 6.460 0.000 508 100.932 -1.054 0.299 718 29.888 -1.100 0.279 718 29.888 -1.100 0.279 59 0.123 -0.292 0.772 3.125 Durbin-W 59 0.210 Jarque-Be -0.548 Prob(JB): 3.293 Cond. No	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.2e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Unit Root Test (Phillips-Perron): Test Statistic: -6.368466 P-Value: 0.000000

Breusch-Pagan test statistic: 3.798060 Breusch-Pagan p-value: 0.284112

Variance Inflation Factors: Variables VIF

0	const	200.518812
1	ing1	1.211498
2	ing2	1.206556
3	ing3	1.005063

Logistic Regression Coefficients

DISPLAYING STATISTICAL TABLES

VSP comes with inbuilt statistical tables for t, z, F1, F5, and Chi-square distributions. This is an additional feature for those who would like to interpret their own results and significance tests manually. To display any of the tables, start VSP, select Statistics -> Statistical Tables -> (any of t, z, F1, F5, or Chi-square) and this will be displayed pronto.